دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: James P. Meyers
سری:
ناشر: Independently Published
سال نشر: 2024
تعداد صفحات: 182
[169]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Phyton Programming Bible: [3 in 1] The Complete Crash Course to Learn and Explore Python beyond the Basic به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب مقدس برنامه نویسی پایتون: [3 در 1] دوره کامل Crash برای یادگیری و کاوش پایتون فراتر از اصول اولیه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Introduction to Python What is Python? Brief history and development of Python Features and strengths of Python Why learns Python? Real-world applications of Python Career opportunities with Python: Installing Python Windows: macOS: Linux: Configuring the Python Environment: Python Development Environments Choosing the Right IDE for Your Needs Chapter 1: Basic Concepts Data Types Variables Operators Basic Data Structures Control Flow Functions and Modules Functions and Parameters Defining and Calling Functions Positional and Keyword Arguments Returning Values Multiple Return Values Built-in Functions Importing Modules Overview of Python Modules Importing Modules in Your Code Creating and Using Your Own Modules Creating a Custom Python Module Using a Custom Python Module Organizing Your Code with Modules Chapter 2: Input and Output Standard Input/Output Basic input/output with Python Reading and writing to the console Reading and Writing Files Reading text and binary files with Python Writing data to files Error Handling Handling exceptions with try/except blocks Raising your own exceptions Chapter 3: Object-Oriented Programming Classes and Objects Methods and Attributes Inheritance The Benefits of Inheriting Properties and Methods From Parent Classes Creating child classes Polymorphism Using polymorphism in Python Polymorphism in Inheritance Overriding Methods Chapter 4: Advanced Topics Regular Expressions Overview of Regular Expressions: Using Regular Expressions in Python: Lambda Functions Introduction to Lambda Functions: List Comprehensions Creating Lists with List Comprehensions: Advanced List Comprehension Techniques: Decorators Overview of Decorators in Python: Creating and Using Decorators: Generators Overview of Generators in Python: Creating and Using Generators: Chapter 1: Python Libraries and Applications NumPy Overview of NumPy: Using NumPy for numerical computations: Pandas Overview of Pandas Using Pandas for data manipulation and analysis: Matplotlib Overview of Matplotlib: Creating data visualizations with Matplotlib: Flask Overview of Flask Building web applications with Flask Django Overview of Django Building web applications with Django Chapter 2: Working with APIs What are APIs? Types of APIs HTTP Requests and Responses Overview of HTTP protocol Sending and receiving HTTP requests with Python JSON Data Format Introduction to JSON Parsing and creating JSON data in Python Accessing APIs with Python Using the Requests library to access APIs Authentication with APIs Examples of Popular APIs Twitter API OpenWeatherMap API Google Maps API Chapter 3: Data Analysis and Visualization Reading Data with Pandas Importing data into Pandas Working with different data formats Data Cleaning and Preparation Handling missing data Data normalization and scaling Exploratory Data Analysis Summary statistics and visualizations Data profiling and exploration techniques Visualizing Data with Matplotlib and Seaborn Creating charts and graphs with Matplotlib Using Seaborn for advanced visualization Basic Statistical Analysis with Python Descriptive Statistics Hypothesis Testing Chapter 4: Machine Learning with Python Overview of Machine Learning Types of Machine Learning Algorithms Supervised and Unsupervised Learning Supervised Learning Unsupervised Learning Difference between Supervised and Unsupervised Learning Scikit-Learn Library Using Scikit-Learn for machine learning tasks Examples of using Scikit-Learn for machine learning tasks Common Machine Learning Algorithms Applications of Machine Learning in Python Chapter 5: Web Scraping with Python What is Web Scraping? How to Use Python for Web Scraping Requests Library BeautifulSoup Library Scraping Data from Websites Step 1: Send a GET Request Step 2: Parse the HTML Step 3: Extract Data Data Extraction and Cleaning Regular Expressions String Manipulation Chapter 6: Data Science with Python Introduction to Data Science Working with Data Frames in Python Data Visualization with Matplotlib and Seaborn Exploratory Data Analysis and Statistical Analysis Linear and Logistic Regression Analysis Chapter 7: Web Development with Python Introduction to web development with Python Creating dynamic websites using Flask and Django Building web applications with Python Chapter 8: Testing and Debugging in Python Why Testing and Debugging is Important Types of Testing in Python Unit Testing with Pytest Debugging Techniques in Python Profiling Python Code Chapter 9: Networking with Python Introduction to networking in Python Basic networking concepts Socket programming with Python Client-server communication in Python Networking libraries in Python (e.g. Twisted, Scapy) Chapter 10: Game Development with Python Introduction to Game Development with Python Pygame library for Game Development Creating Games with Python Physics Simulation in Python Game Development Game Design Principles and Strategies Chapter 11: Cybersecurity with Python Introduction to Cybersecurity with Python Cryptography and Encryption in Python Network Security with Python Web Security with Python Threat Detection and Response with Python Chapter 12: Big Data with Python Introduction to Big Data and Python Processing Big Data with Python Working with Hadoop and Spark using Python Storing and Managing Big Data with Python Data Visualization and Analysis for Big Data with Python Chapter 13: Natural Language Processing with Python Introduction to natural language processing: Text pre-processing and cleaning with Python: Sentiment analysis with Python: Named entity recognition with Python: Topic modeling with Python: BOOK 3: MASTERING PYTHON LIKE A PRO Chapter 1: Deep Learning with Python Introduction to deep learning Neural network basics Keras library for deep learning with Python Convolutional neural networks for image processing Recurrent neural networks for natural language processing Chapter 2: Cloud Computing with Python Introduction to Cloud Computing with Python Cloud Computing Platforms (e.g. AWS, Google Cloud, Azure) Managing Cloud Infrastructure with Python Deploying Python Applications to the Cloud Big Data Processing in the Cloud with Python Chapter 3: GUI Programming with Python Introduction to GUI programming with Python Tkinter library for GUI programming with Python Building desktop applications with Python Designing user interfaces with Python Event-driven programming in GUI programming with Python Chapter 4: Mobile App Development with Python Introduction to Mobile App Development with Python Kivy Library for Mobile App Development with Python Building Cross-Platform Mobile Apps with Python User Interface Design for Mobile Apps with Python Mobile App Deployment with Python Chapter 5: Future Work and Next Steps Review of Python Basics Tips for Continued Learning and Practice Future Directions and Applications for Python Applications of Python in different fields: Appendix: Python Reference Python Version Syntax Data Types Variables Operators String Methods Date and Time File Handling Exception Handling Conclusion